This blog shows the articles or any good thing that I have come across while browsing. I update this when ever i get time so may not be regular, but one will find all sorts of reading stuff here.
Saturday, May 24, 2008
MATRIC CONVERSION
inch | inch | mm |
1/64 | 0.016 | 0.397 |
1/32 | 0.031 | 0.794 |
3/64 | 0.047 | 1.191 |
1/16 | 0.063 | 1.588 |
5/64 | 0.078 | 1.984 |
3/32 | 0.094 | 2.381 |
7/64 | 0.109 | 2.778 |
1/8 | 0.125 | 3.175 |
9/64 | 0.141 | 3.572 |
5/32 | 0.156 | 3.969 |
11/64 | 0.172 | 4.366 |
3/16 | 0.188 | 4.763 |
13/64 | 0.203 | 5.159 |
7/32 | 0.219 | 5.556 |
15/64 | 0.234 | 5.953 |
1/4 | 0.250 | 6.350 |
17/64 | 0.266 | 6.747 |
9/32 | 0.281 | 7.144 |
19/64 | 0.297 | 7.541 |
5/16 | 0.313 | 7.938 |
21/64 | 0.328 | 8.334 |
11/32 | 0.344 | 8.731 |
23/64 | 0.359 | 9.128 |
3/8 | 0.375 | 9.525 |
25/64 | 0.391 | 9.922 |
13/32 | 0.406 | 10.319 |
27/64 | 0.422 | 10.716 |
7/16 | 0.438 | 11.113 |
29/64 | 0.453 | 11.509 |
15/32 | 0.469 | 11.906 |
31/64 | 0.484 | 12.303 |
1/2 | 0.500 | 12.700 |
33/64 | 0.516 | 13.097 |
17/32 | 0.531 | 13.494 |
35/64 | 0.547 | 13.891 |
9/16 | 0.563 | 14.288 |
37/64 | 0.578 | 14.684 |
19/32 | 0.594 | 15.081 |
39/64 | 0.609 | 15.478 |
5/8 | 0.625 | 15.875 |
41/64 | 0.641 | 16.272 |
21/32 | 0.656 | 16.669 |
43/64 | 0.672 | 17.066 |
11/16 | 0.688 | 17.463 |
45/64 | 0.703 | 17.859 |
23/32 | 0.719 | 18.256 |
47/64 | 0.734 | 18.653 |
3/4 | 0.750 | 19.050 |
49/64 | 0.766 | 19.447 |
25/32 | 0.781 | 19.844 |
51/64 | 0.797 | 20.241 |
13/16 | 0.813 | 20.638 |
53/64 | 0.828 | 21.034 |
27/32 | 0.844 | 21.431 |
55/64 | 0.859 | 21.828 |
7/8 | 0.875 | 22.225 |
57/64 | 0.891 | 22.622 |
29/32 | 0.906 | 23.019 |
59/64 | 0.922 | 23.416 |
15/16 | 0.938 | 23.813 |
61/64 | 0.953 | 24.209 |
31/32 | 0.969 | 24.606 |
63/64 | 0.984 | 25.003 |
1 | 1.000 | 25.400 |
Number Notation
Hierarchy of Numbers
0 ([text:zero]) 1 ([text:one]) 2 ([text:two]) 3 ([text:three]) 4 ([text:four]) 5 ([text:five]) 6 ([text:six]) 7 ([text:seven]) 8 ([text:eight]) 9 ([text:nine]) 10 ([text:ten]) 10^2 ([text:hundred]) 10^3 ([text:thousand])
[text:name] | [text:American-French] | [text:English-German] |
---|---|---|
[text:million] | 10^6 | 10^6 |
[text:billion] | 10^9 | 10^12 |
[text:trillion] | 10^12 | 10^18 |
[text:quadrillion] | 10^15 | 10^24 |
[text:quintillion] | 10^18 | 10^30 |
[text:sextillion] | 10^21 | 10^36 |
[text:septillion] | 10^24 | 10^42 |
[text:octillion] | 10^27 | 10^48 |
[text:nonillion] | 10^30 | 10^54 |
[text:decillion] | 10^33 | 10^60 |
[text:undecillion] | 10^36 | 10^66 |
[text:duodecillion] | 10^39 | 10^72 |
[text:tredecillion] | 10^42 | 10^78 |
[text:quatuordecillion] | 10^45 | 10^84 |
[text:quindecillion] | 10^48 | 10^90 |
[text:sexdecillion] | 10^51 | 10^96 |
[text:septendecillion] | 10^54 | 10^102 |
[text:octodecillion] | 10^57 | 10^108 |
[text:novemdecillion] | 10^60 | 10^114 |
[text:vigintillion] | 10^63 | 10^120 |
googol | 10^100 |
googolplex | 10^googol = 10^(10^100) |
SI Prefixes
|
|
[text:Roman Numerals]
I=1 | V=5 | X=10 | L=50 | C=100 | D=500 | M=1 000 |
_ V=5 000 | _ X=10 000 | _ L=50 000 | _ C = 100 000 | _ D=500 000 | _ M=1 000 000 |
1 = I | 11 = XI | 25 = XXV |
[text:Number Base Systems]
[text:decimal] | [text:binary] | [text:ternary] | oct | hex |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 | 2 |
3 | 11 | 10 | 3 | 3 |
4 | 100 | 11 | 4 | 4 |
5 | 101 | 12 | 5 | 5 |
6 | 110 | 20 | 6 | 6 |
7 | 111 | 21 | 7 | 7 |
8 | 1000 | 22 | 10 | 8 |
9 | 1001 | 100 | 11 | 9 |
10 | 1010 | 101 | 12 | A |
11 | 1011 | 102 | 13 | B |
12 | 1100 | 110 | 14 | C |
13 | 1101 | 111 | 15 | D |
14 | 1110 | 112 | 16 | E |
15 | 1111 | 120 | 17 | F |
16 | 10000 | 121 | 20 | 10 |
17 | 10001 | 122 | 21 | 11 |
18 | 10010 | 200 | 22 | 12 |
19 | 10011 | 201 | 23 | 13 |
20 | 10100 | 202 | 24 | 14 |
Algebraic Graphs
Conic Sections (see also Conic Sections) | Point x^2 + y^2 = 0 | Circle x^2 + y^2 = r^2 |
Ellipse x^2 / a^2 + y^2 / b^2 = 1 | Ellipse x^2 / b^2 + y^2 / a^2 = 1 | Hyperbola x^2 / a^2 - y^2 / b^2 = 1 |
Parabola 4px = y^2 | Parabola 4py = x^2 | Hyperbola y^2 / a^2 - x^2 / b^2 = 1 |
For any of the above with a center at (j, k) instead of (0,0), replace each x term with (x-j) and each y term with (y-k) to get the desired equation. |
Exponential Identities
Powers
x a x b = x (a + b)x a y a = (xy) a
(x a) b = x (ab)
x (a/b) = bth root of (x a) = ( bth (x) ) a
x (-a) = 1 / x a
x (a - b) = x a / x b
Logarithms
y = logb(x) if and only if x=b ylogb(1) = 0
logb(b) = 1
logb(x*y) = logb(x) + logb(y)
logb(x/y) = logb(x) - logb(y)
logb(x n) = n logb(x)
logb(x) = logb(c) * logc(x) = logc(x) / logc(b)
Conic Section
Conic Sections
Circle | Ellipse (h) | Parabola (h) | Hyperbola (h) |
Definition: A conic section is the intersection of a plane and a cone. | Ellipse (v) | Parabola (v) | Hyperbola (v) |
By changing the angle and location of intersection, we can produce a circle, ellipse, parabola or hyperbola; or in the special case when the plane touches the vertex: a point, line or 2 intersecting lines.
Point | Line | Double Line |
The General Equation for a Conic Section: Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 |
The type of section can be found from the sign of: B2 - 4AC
If B2 - 4AC is... | then the curve is a... |
<> | ellipse, circle, point or no curve. |
= 0 | parabola, 2 parallel lines, 1 line or no curve. |
> 0 | hyperbola or 2 intersecting lines. |
The Conic Sections. For any of the below with a center (j, k) instead of (0, 0), replace each x term with (x-j) and each y term with (y-k).
Circle | Ellipse | Parabola | Hyperbola | |
Equation (horiz. vertex): | x2 + y2 = r2 | x2 / a2 + y2 / b2 = 1 | 4px = y2 | x2 / a2 - y2 / b2 = 1 |
Equations of Asymptotes: | y = ± (b/a)x | |||
Equation (vert. vertex): | x2 + y2 = r2 | y2 / a2 + x2 / b2 = 1 | 4py = x2 | y2 / a2 - x2 / b2 = 1 |
Equations of Asymptotes: | x = ± (b/a)y | |||
Variables: | r = circle radius | a = major radius (= 1/2 length major axis) b = minor radius (= 1/2 length minor axis) c = distance center to focus | p = distance from vertex to focus (or directrix) | a = 1/2 length major axis b = 1/2 length minor axis c = distance center to focus |
Eccentricity: | 0 | c/a | c/a | |
Relation to Focus: | p = 0 | a2 - b2 = c2 | p = p | a2 + b2 = c2 |
Definition: is the locus of all points which meet the condition... | distance to the origin is constant | sum of distances to each focus is constant | distance to focus = distance to directrix | difference between distances to each foci is constant |
Related Topics: | Geometry section on Circles |
Weights and Measures
Weights and Measures
Unit Conversion Tables
Lengths & DistancesAlso, Ken Prentice offers a variety of unit conversion calculators that run on Windows.
Areas
Volumes
A note on the metric system:
Before you use this table convert to the base measurement first, in that convert centi-meters to meters, convert kilo-grams to grams. In this way, I don't have to list every imaginable combination of metric units.
SI Prefixes
|
|
Tables
Fraction to Decimal Conversion
Fraction to Decimal Conversion Tables
Important Note: any span of numbers that is underlined signifies that those numbes are repeated. For example, 0.09 signifies 0.090909....Only fractions in lowest terms are listed. For instance, to find 2/8, first simplify it to 1/4 then search for it in the table below.
fraction = decimal | |||
1/1 = 1 | |||
1/2 = 0.5 | |||
1/3 = 0.3 | 2/3 = 0.6 | ||
1/4 = 0.25 | 3/4 = 0.75 | ||
1/5 = 0.2 | 2/5 = 0.4 | 3/5 = 0.6 | 4/5 = 0.8 |
1/6 = 0.16 | 5/6 = 0.83 | ||
1/7 = 0.142857 | 2/7 = 0.285714 | 3/7 = 0.428571 | 4/7 = 0.571428 |
5/7 = 0.714285 | 6/7 = 0.857142 | ||
1/8 = 0.125 | 3/8 = 0.375 | 5/8 = 0.625 | 7/8 = 0.875 |
1/9 = 0.1 | 2/9 = 0.2 | 4/9 = 0.4 | 5/9 = 0.5 |
7/9 = 0.7 | 8/9 = 0.8 | ||
1/10 = 0.1 | 3/10 = 0.3 | 7/10 = 0.7 | 9/10 = 0.9 |
1/11 = 0.09 | 2/11 = 0.18 | 3/11 = 0.27 | 4/11 = 0.36 |
5/11 = 0.45 | 6/11 = 0.54 | 7/11 = 0.63 | |
8/11 = 0.72 | 9/11 = 0.81 | 10/11 = 0.90 | |
1/12 = 0.083 | 5/12 = 0.416 | 7/12 = 0.583 | 11/12 = 0.916 |
1/16 = 0.0625 | 3/16 = 0.1875 | 5/16 = 0.3125 | 7/16 = 0.4375 |
11/16 = 0.6875 | 13/16 = 0.8125 | 15/16 = 0.9375 | |
1/32 = 0.03125 | 3/32 = 0.09375 | 5/32 = 0.15625 | 7/32 = 0.21875 |
9/32 = 0.28125 | 11/32 = 0.34375 | 13/32 = 0.40625 | |
15/32 = 0.46875 | 17/32 = 0.53125 | 19/32 = 0.59375 | |
21/32 = 0.65625 | 23/32 = 0.71875 | 25/32 = 0.78125 | |
27/32 = 0.84375 | 29/32 = 0.90625 | 31/32 = 0.96875 |
Need to convert a repeating decimal to a fraction? Follow these examples:
Note the following pattern for repeating decimals:
0.22222222... = 2/9
0.54545454... = 54/99
0.298298298... = 298/999
Division by 9's causes the repeating pattern.
Note the pattern if zeros preceed the repeating decimal:
0.022222222... = 2/90
0.00054545454... = 54/99000
0.00298298298... = 298/99900
Adding zero's to the denominator adds zero's before the repeating decimal.
To convert a decimal that begins with a non-repeating part, such as 0.21456456456456456..., to a fraction, write it as the sum of the non-repeating part and the repeating part.
0.21 + 0.00456456456456456...
Next, convert each of these decimals to fractions. The first decimal has a divisor of power ten. The second decimal (which repeats) is convirted according to the pattern given above.
21/100 + 456/99900
Now add these fraction by expressing both with a common divisor
20979/99900 + 456/99900
and add.
21435/99900
Finally simplify it to lowest terms
1429/6660
and check on your calculator or with long division.
= 0.2145645645...