Saturday, May 24, 2008

TABLE OF COMMON LOGARITHM

TABLE OF COMMON LOG AVAILABLE HERE

MATRIC CONVERSION

inch inch mm
1/64 0.016 0.397
1/32 0.031 0.794
3/64 0.047 1.191
1/16 0.063 1.588
5/64 0.078 1.984
3/32 0.094 2.381
7/64 0.109 2.778
1/8 0.125 3.175
9/64 0.141 3.572
5/32 0.156 3.969
11/64 0.172 4.366
3/16 0.188 4.763
13/64 0.203 5.159
7/32 0.219 5.556
15/64 0.234 5.953
1/4 0.250 6.350
17/64 0.266 6.747
9/32 0.281 7.144
19/64 0.297 7.541
5/16 0.313 7.938
21/64 0.328 8.334
11/32 0.344 8.731
23/64 0.359 9.128
3/8 0.375 9.525
25/64 0.391 9.922
13/32 0.406 10.319
27/64 0.422 10.716
7/16 0.438 11.113
29/64 0.453 11.509
15/32 0.469 11.906
31/64 0.484 12.303
1/2 0.500 12.700
33/64 0.516 13.097
17/32 0.531 13.494
35/64 0.547 13.891
9/16 0.563 14.288
37/64 0.578 14.684
19/32 0.594 15.081
39/64 0.609 15.478
5/8 0.625 15.875
41/64 0.641 16.272
21/32 0.656 16.669
43/64 0.672 17.066
11/16 0.688 17.463
45/64 0.703 17.859
23/32 0.719 18.256
47/64 0.734 18.653
3/4 0.750 19.050
49/64 0.766 19.447
25/32 0.781 19.844
51/64 0.797 20.241
13/16 0.813 20.638
53/64 0.828 21.034
27/32 0.844 21.431
55/64 0.859 21.828
7/8 0.875 22.225
57/64 0.891 22.622
29/32 0.906 23.019
59/64 0.922 23.416
15/16 0.938 23.813
61/64 0.953 24.209
31/32 0.969 24.606
63/64 0.984 25.003
1 1.000 25.400
FOR PRIME FACTORS

Number Notation

Hierarchy of Numbers

0 ([text:zero]) 1 ([text:one]) 2 ([text:two]) 3 ([text:three]) 4 ([text:four]) 5 ([text:five]) 6 ([text:six]) 7 ([text:seven]) 8 ([text:eight]) 9 ([text:nine]) 10 ([text:ten]) 10^2 ([text:hundred]) 10^3 ([text:thousand])

[text:name] [text:American-French] [text:English-German]
[text:million] 10^6 10^6
[text:billion] 10^9 10^12
[text:trillion] 10^12 10^18
[text:quadrillion] 10^15 10^24
[text:quintillion] 10^18 10^30
[text:sextillion] 10^21 10^36
[text:septillion] 10^24 10^42
[text:octillion] 10^27 10^48
[text:nonillion] 10^30 10^54
[text:decillion] 10^33 10^60
[text:undecillion] 10^36 10^66
[text:duodecillion] 10^39 10^72
[text:tredecillion] 10^42 10^78
[text:quatuordecillion] 10^45 10^84
[text:quindecillion] 10^48 10^90
[text:sexdecillion] 10^51 10^96
[text:septendecillion] 10^54 10^102
[text:octodecillion] 10^57 10^108
[text:novemdecillion] 10^60 10^114
[text:vigintillion] 10^63 10^120
googol 10^100
googolplex 10^googol = 10^(10^100)

SI Prefixes

NumberPrefixSymbol
10 1deka-da
10 2hecto-h
10 3kilo-k
10 6mega-M
10 9giga-G
10 12tera-T
10 15peta-P
10 18exa-E
10 21zeta-Z
10 24yotta-Y
NumberPrefixSymbol
10 -1deci-d
10 -2centi-c
10 -3milli-m
10 -6micro-u (greek mu)
10 -9nano-n
10 -12pico-p
10 -15femto-f
10 -18atto-a
10 -21zepto-z
10 -24yocto-y

[text:Roman Numerals]

I=1V=5X=10L=50C=100D=500M=1 000
_
V=5 000
_
X=10 000
_
L=50 000
_
C = 100 000
_
D=500 000
_
M=1 000 000
[text:Examples]:
1 = I
2 = II
3 = III
4 = IV
5 = V
6 = VI
7 = VII
8 = VIII
9 = IX
10 = X
11 = XI
12 = XII
13 = XIII
14 = XIV
15 = XV
16 = XVI
17 = XVII
18 = XVIII
19 = XIX
20 = XX
21 = XXI
25 = XXV
30 = XXX
40 = XL
49 = XLIX
50 = L
51 = LI
60 = LX
70 = LXX
80 = LXXX
90 = XC
99 = XCIX

[text:Number Base Systems]

[text:decimal] [text:binary] [text:ternary] oct hex
0 0 0 0 0
1 1 1 1 1
2 10 2 2 2
3 11 10 3 3
4 100 11 4 4
5 101 12 5 5
6 110 20 6 6
7 111 21 7 7
8 1000 22 10 8
9 1001 100 11 9
10 1010 101 12 A
11 1011 102 13 B
12 1100 110 14 C
13 1101 111 15 D
14 1110 112 16 E
15 1111 120 17 F
16 10000 121 20 10
17 10001 122 21 11
18 10010 200 22 12
19 10011 201 23 13
20 10100 202 24 14
[text:JavaScript Base Conversion Calculator] ([text:This converts non-integer values & negative bases too!])
[text:from base] [text:to base] [text:value to convert]
[text:Caution: due to CPU restrictions, some rounding has been known to occur for numbers spanning greater than 12 base10 digits, 13 hexadecimal digits or 52 binary digits.] [text:Just like a regular calculator, rounding can occur.]


Downloads

http://math2.org/math/download.htm

Algebraic Graphs

Conic Sections
(see also Conic Sections)
Point

x^2 + y^2 = 0
Circle

x^2 + y^2 = r^2
Ellipse

x^2 / a^2 + y^2 / b^2 = 1
Ellipse

x^2 / b^2 + y^2 / a^2 = 1
Hyperbola

x^2 / a^2 - y^2 / b^2 = 1
Parabola

4px = y^2
Parabola

4py = x^2
Hyperbola

y^2 / a^2 - x^2 / b^2 = 1
For any of the above with a center at (j, k) instead of (0,0), replace each x term with (x-j) and each y term with (y-k) to get the desired equation.

Exponential Identities

Powers

x a x b = x (a + b)

x a y a = (xy) a

(x a) b = x (ab)

x (a/b) = bth root of (x a) = ( bth (root)(x) ) a

x (-a) = 1 / x a

x (a - b) = x a / x b

Logarithms

y = logb(x) if and only if x=b y

logb(1) = 0

logb(b) = 1

logb(x*y) = logb(x) + logb(y)

logb(x/y) = logb(x) - logb(y)

logb(x n) = n logb(x)

logb(x) = logb(c) * logc(x) = logc(x) / logc(b)

Conic Section

Conic Sections

circle conicellipse conicparabola conichyperbola conic
Circle
graph circle (horiz.)
Ellipse (h)
graph ellipse (horiz.)
Parabola (h)
graph parabola (horiz.)
Hyperbola (h)
graph hyperbola (horiz.)
Definition:
A conic section is the intersection of a plane and a cone.
Ellipse (v)
graph ellipse (vert.)
Parabola (v)
graph parabola (vert.)
Hyperbola (v)
graph hyperbola (vert.)

By changing the angle and location of intersection, we can produce a circle, ellipse, parabola or hyperbola; or in the special case when the plane touches the vertex: a point, line or 2 intersecting lines.

point conicline conicdouble line conic
Point
graph point conic
Line
graph line conic
Double Line

The General Equation for a Conic Section:
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

The type of section can be found from the sign of: B2 - 4AC

If B2 - 4AC is...then the curve is a...
<>ellipse, circle, point or no curve.
= 0parabola, 2 parallel lines, 1 line or no curve.
> 0hyperbola or 2 intersecting lines.

The Conic Sections. For any of the below with a center (j, k) instead of (0, 0), replace each x term with (x-j) and each y term with (y-k).

Circle Ellipse Parabola Hyperbola
Equation (horiz. vertex): x2 + y2 = r2 x2 / a2 + y2 / b2 = 1 4px = y2 x2 / a2 - y2 / b2 = 1
Equations of Asymptotes: y = ± (b/a)x
Equation (vert. vertex): x2 + y2 = r2 y2 / a2 + x2 / b2 = 1 4py = x2 y2 / a2 - x2 / b2 = 1
Equations of Asymptotes: x = ± (b/a)y
Variables: r = circle radius a = major radius (= 1/2 length major axis)
b = minor radius (= 1/2 length minor axis)
c = distance center to focus
p = distance from vertex to focus (or directrix) a = 1/2 length major axis
b = 1/2 length minor axis
c = distance center to focus
Eccentricity: 0 c/a c/a
Relation to Focus: p = 0 a2 - b2 = c2 p = p a2 + b2 = c2
Definition: is the locus of all points which meet the condition... distance to the origin is constant sum of distances to each focus is constant distance to focus = distance to directrix difference between distances to each foci is constant
Related Topics: Geometry section on Circles

Weights and Measures

Weights and Measures

Unit Conversion Tables

Lengths & Distances
Areas
Volumes
Also, Ken Prentice offers a variety of unit conversion calculators that run on Windows.

A note on the metric system:
Before you use this table convert to the base measurement first, in that convert centi-meters to meters, convert kilo-grams to grams. In this way, I don't have to list every imaginable combination of metric units.

SI Prefixes

NumberPrefixSymbol
10 1deka-da
10 2hecto-h
10 3kilo-k
10 6mega-M
10 9giga-G
10 12tera-T
10 15peta-P
10 18exa-E
10 21zeta-Z
10 24yotta-Y
NumberPrefixSymbol
10 -1deci-d
10 -2centi-c
10 -3milli-m
10 -6micro-
10 -9nano-n
10 -12pico-p
10 -15femto-f
10 -18atto-a
10 -21zepto-z
10 -24yocto-y

Tables

Fraction to Decimal Conversion

Fraction to Decimal Conversion Tables

Important Note: any span of numbers that is underlined signifies that those numbes are repeated. For example, 0.09 signifies 0.090909....

Only fractions in lowest terms are listed. For instance, to find 2/8, first simplify it to 1/4 then search for it in the table below.

fraction = decimal
1/1 = 1
1/2 = 0.5
1/3 = 0.3 2/3 = 0.6
1/4 = 0.25 3/4 = 0.75
1/5 = 0.2 2/5 = 0.4 3/5 = 0.6 4/5 = 0.8
1/6 = 0.16 5/6 = 0.83
1/7 = 0.142857 2/7 = 0.285714 3/7 = 0.428571 4/7 = 0.571428
5/7 = 0.714285 6/7 = 0.857142
1/8 = 0.125 3/8 = 0.375 5/8 = 0.625 7/8 = 0.875
1/9 = 0.1 2/9 = 0.2 4/9 = 0.4 5/9 = 0.5
7/9 = 0.7 8/9 = 0.8
1/10 = 0.1 3/10 = 0.3 7/10 = 0.7 9/10 = 0.9
1/11 = 0.09 2/11 = 0.18 3/11 = 0.27 4/11 = 0.36
5/11 = 0.45 6/11 = 0.54 7/11 = 0.63
8/11 = 0.72 9/11 = 0.81 10/11 = 0.90
1/12 = 0.083 5/12 = 0.416 7/12 = 0.583 11/12 = 0.916
1/16 = 0.0625 3/16 = 0.1875 5/16 = 0.3125 7/16 = 0.4375
11/16 = 0.6875 13/16 = 0.8125 15/16 = 0.9375
1/32 = 0.03125 3/32 = 0.09375 5/32 = 0.15625 7/32 = 0.21875
9/32 = 0.28125 11/32 = 0.34375 13/32 = 0.40625
15/32 = 0.46875 17/32 = 0.53125 19/32 = 0.59375
21/32 = 0.65625 23/32 = 0.71875 25/32 = 0.78125
27/32 = 0.84375 29/32 = 0.90625 31/32 = 0.96875

Need to convert a repeating decimal to a fraction? Follow these examples:
Note the following pattern for repeating decimals:
0.22222222... = 2/9
0.54545454... = 54/99
0.298298298... = 298/999
Division by 9's causes the repeating pattern.

Note the pattern if zeros preceed the repeating decimal:
0.022222222... = 2/90
0.00054545454... = 54/99000
0.00298298298... = 298/99900
Adding zero's to the denominator adds zero's before the repeating decimal.

To convert a decimal that begins with a non-repeating part, such as 0.21456456456456456..., to a fraction, write it as the sum of the non-repeating part and the repeating part.
0.21 + 0.00456456456456456...
Next, convert each of these decimals to fractions. The first decimal has a divisor of power ten. The second decimal (which repeats) is convirted according to the pattern given above.
21/100 + 456/99900
Now add these fraction by expressing both with a common divisor
20979/99900 + 456/99900
and add.
21435/99900
Finally simplify it to lowest terms
1429/6660
and check on your calculator or with long division.
= 0.2145645645...